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Abstract

Can a machine learn to play sheet music? This thesis investigates whether it is possible for
a suitable computational model to learn musical style and successfully perform using sheet
music. Music captures several aspects of a musician’s style. Musical style can be observed in
the unique dynamics of their performances and categorising genre. Style is di�cult to define
but there is a perceivable relationship between dynamics and style. This thesis investigates
whether it is possible for a machine to learn musical style through the dynamics of music. Great
advancements have been made in music generation using machine learning [47, 10, 52]. However,
the focus of previous research has not been on capturing style.

To capture musical style through dynamics, a new architecture called StyleNet is designed.
The designed architecture is capable of synthesising the dynamics of digital sheet music. The
Piano dataset is created for the purposes of learning style. The designed model is trained on
the Piano dataset which contains Jazz and Classical piano solo MIDIs. Di↵erent configurations
and training techniques are experimented with. The model’s generated performances are then
assessed by a musical Turing test. The model’s ability to perform in di↵erent styles is also
evaluated. The research concludes that StyleNet’s musical performances successfully pass the
musical Turing test. This opens many doors for using such a model for assisting the creative
process in the music industry.

To summarise, my main contributions and achievements in this project can be listed as follows:

• I designed Stylenet which is a neural network architecture capable of synthesising the
dynamics of sheet music.

• I implemented StyleNet using the Tensorflow library with a total of 1000 lines in Python.

• I implemented a batching system to e�ciently train the StyleNet model with a total of
500 lines in Python.

• I designed the data representation format for StyleNet.

• I implemented a data preprocessing pipeline for MIDI files with a total of 2000 lines in
Python.

• I experimented with di↵erent StyleNet configurations and designs.

• I created the Piano dataset which contains a total of 649 Jazz and Classical piano solo
MIDIs.

• I successfully trained a StyleNet model which passed the musical Turing test by producing
performances that are indistinguishable from that of a human.
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Supporting Technologies

• The Tensorflow library was used to implement the designed StyleNet architecture [30].

• Parts of the mido library were used to parse MIDI [29].

• Logic Pro X was used to visualise the generated MIDI performances[56].

• A simple MIDI-parsing script was extended to adapt its functionality to the Piano dataset
[4].

• Parts of the pretty-midi library were used to modify MIDI instrument tracks[37].

• The HPC Zoo was used to train the StyleNet model. The Titan X, and GTX 1080 Ti were
primarily used for training [62].

ix



x



Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my supervisor Dr Carl
Henrik Ek who has supported me throughout my thesis. His motivation, enthusiasm, and
immense knowledge helped me immensely in the time of research and writing of this thesis. Our
weekly project meetings were always incredibly inspirational and enjoyable. I could not have
imagined having a better supervisor and mentor.

Also I would like to thank my best friend, James Sewart, for his insightful comments and
continuous encouragement. The discussions over our daily lunch breaks provided support and
laughs throughout the duration of my research.

Last but not the least, I would like to thank my parents for their love, motivation and support.

xi



xii



Chapter 1

Introduction

Music is mysterious. Anthropologists have shown that every record of human culture has some
aspect of music involved yet the exact evolutionary role of music is shrouded in mystery. Scholars
theorise and state that music must have emerged as an evolutionary aid [46, 20]. One theory
proposes that music may have arisen from mothers putting their children to sleep [12]. Some
propose that the function of music was to provide social cement for group action [38, 46, 25].
War songs, national anthems, lullabies are all examples of this.

Music also appears to be hardwired into us since birth. A study showed that babies would dance
to all types of music and suggested that humans have a predisposition for rhythmic movement
in response to music[60]. Recent research has uncovered that the human brain picks up the beat
of music automatically[7].

Music is fundamentally a sequence of notes. Humans construct long sequences of notes which are
then labelled as music. These sequences of notes are usually articulated through instruments.
The audiological form of these notes is then listened to in the form of music. These songs can
convey an emotional and psychological experience for the listener [44, 32]. If one were to reverse
the notes in the song, it would most likely not be called music anymore. This highlights the
complex structure of music.

1.1 Musical Notation

Languages contain structure. Humans write to communicate their thoughts through language.
Musical ideas need to be communicated too. Since prehistoric times, humans have been using
musical notation to represent their aural perception. From clay engravings to western musical
notation, each notation di↵ers significantly from the others. Musical notation has gone through
a series of incremental innovations to satisfy the evolving musical demands of each era [50].

The earliest records of musical notation date back to 2000 BC [54, 55]. In Sumer which is now
known as modern day Iraq, archaeologists uncovered clay tablets that displayed a musical nota-
tion in one of the oldest systems of writing. More recent examples are the Baroque and Classical
period. Interestingly, Baroque notation provides less encoded information than Classical [50].
Often the dynamics of the music are not captured. This missing property leaves the score open
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CHAPTER 1. INTRODUCTION

to interpretation. In other words, two people could have very di↵erent ways of playing a Baroque
piece. One could say the same for all genres as the understanding of the tempi and dynamics of
a musical piece are relative to the performer’s interpretation.

1.2 What is Style?

Style is di�cult to define. One can observe performers displaying their individualistic interpre-
tations of music at live concerts. Listeners subconsciously process the perceivable features of
these performances. A possible breakdown of these features is dynamics and tempi. This can
also be understood as the variations in loudness and timing. Another possible breakdown is the
melody and harmonics. These features allow us to label the music in certain ways. Through
listening to these features, one is usually able to assign a descriptive label to a performance such
as a specific composer or genre. A listener familiar with music can easily tell if a song is Jazz
or Classical through these features.

It can be assumed that a set of these features can represent audible “style”. These features
di↵erentiate artists from each other. They also di↵erentiate genres. This can be observed using
the example of Jazz and Classical music. The style of Jazz is di↵erent from Classical. Thus any
artist that plays Jazz music will have a di↵erent style to that of a Classical artist.

1.3 Visual Style

The concept of visual “style” can also be observed in paintings through visual features. Painters
express individualism through these features. The style of Picasso is noticeably di↵erent from
Van Gough. Gatys et al. [13] successfully utilised machine learning to teach a machine the style
associated with a certain artist. The results of this were that the artist’s style was transferrable
onto a photograph. Similarly, Zhu et al. [61] were successfully able to convert a picture of
oranges to a picture of apples and vice versa. This is analogous to learning the visual style of
di↵erent fruit and applying a certain style onto a photo. There have been other several successful
attempts at transferring style between photographs [31].

Machine learning has been extremely successful in the domain of images. Such algorithms allow
us to teach machines without explicitly programming them. The use of machine learning in the
field of Artificial Intelligence (AI) has lead to machines reaching human parity in tasks such as
speech recognition [57]. For image classification, AI has surpassed human accuracy [26]. These
tasks all display the exceptional ability of machine learning algorithms.

In the past, the field of AI made several promises but failed to meet expectations. This period is
called the “AI winter”. During this time AI research was partially stalled. The start of the winter
is assumed to be 1987 [51]. This was mostly due to the di�culty in training AI. An example
of this are the expert systems that were explicitly programmed rule-based systems. These were
extremely hard to maintain which lead to their downfall. Now, AI research has slowly come
back and is producing impressive results [57]. However, these successes have come into fruition
with the knowledge of how to train AI as it can be quite complex. Another important factor
in the resurgence of AI has been the availability of large amounts data over the internet and
increased computational power through GPU parallelisation.
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1.4. RELATED LITERATURE

1.4 Related Literature

Previous studies have focused on generating music rather than style [47, 19, 10, 52]. The
CONCERT model was designed to compose simple melodies [47]. However, the limitations
of this generative model were that it could not capture the global structure of music. The
generated music was said to lack “global coherence”. This is problematic as music has long-range
dependencies. Based on the CONCERT model, Eck and Schmidhuber [10] tackled this problem
by building a model that could learn long-range dependencies. A recent project by Google called
Magenta showcased an AI-duet game which allows the player to compose a melody with the
trained model [34]. These projects showcase the exceptional power of machine learning in the
temporal domain of music.

However, these musical models are trying to learn the syntax of music. Musical sequences contain
many dependencies. To predict how a song changes at a given time, it depends on what came
before it. The beginning of the song may influence the end of the song. This means one could
say there are long-range dependencies alongside short-range dependencies which adds further
complexity to the problem. It is also extremely complex to determine what makes a sequence
of notes into “music”. One can only determine whether a sequence of notes is music through
human confirmation.

This leads to say that much research is needed in understanding the complex structure of music.
However, the stylistic properties of the music are not focused on by these generative models.
These generative models are essentially producing digital sheet music. One could analyse this
and say that the digital sheet music is open to interpretation. Similar to visual style, this opens
a door for applying style to music.

In the domain of musical style transfer, a project attempted at transferring style between two
songs in waveform format [4]. The resulting waveform had a considerable amount of noise, but
if one disregards the noise, there was a meaningful stylised signal. It also took an exceptional
time to train the model on 10 seconds of audio.

Audio poses several problems in the domain of music. For the task of extracting note pitch, a
Fourier transform is first utilised to detect the base frequency, which is then mapped to a specific
pitch [39]. Note times would have to be detected with a beat detection algorithm. This process
is quite convoluted and time-consuming. There exists a format type called Musical Instrument
Digital Interface (MIDI) which simplifies this process. It is the most commonly used format
when composing music on a computer. It encodes basic musical properties such as pitch, timing
and velocity.

A project called ’Bachbot’ focused on generating and harmonising Bach-styled chorales us-
ing MIDI. MIDI files were converted into a matrix representation before their use [28]. The
generative model successfully passed a musical Turing test. The generated chorales were indis-
tinguishable from Bach’s real chorales to 71.6% of “educated listeners”.

However ’Bachbot’ focuses on generating melodic components. Audible style is defined as the
chorales of the song. This definition of style means that the model is still required to learn
the structure of polyphonic music and then, generate possible chorales. Another feature that
could be defined as style is the change of dynamics over time. How loud does a performer play
a sequence of notes given its sheet music? With such a definition, the model would not need
to learn to generate “pleasant” music but only the correlation of notes and their amplitude
depending on their context. This can be extended to hypothesise di↵erent dynamics under
di↵erent genres.
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CHAPTER 1. INTRODUCTION

There exists a lot of music data in the form of MIDI. MIDI files are usually labelled with the
composer or genre. These files capture the style of the performers as they are live recordings.
This mostly applies to Jazz and Classical due to the fact that MIDI controllers are mostly pianos.
These two genres tend to feature piano performances. Additionally, dynamics are captured in
MIDI as a parameter called note velocity. This provides us the opportunity to use the state-
of-the-art in machine learning to predict sheet music dynamics through note velocities. Can a
machine learn style through dynamics and perform on any given sheet music like a human? If
so, is it also possible for the model to perform sheet music in di↵erent styles? This is analogous
to Mozart and Jimmy Hendrix playing sheet music that they have never seen before.

1.5 Project Aims

The high-level objective of this project is to investigate whether a model can learn
musical style through dynamics and play sheet music like a human? If so, is it
possible for the model to play performances in di↵erent styles such as Classical and
Jazz? More specifically, the primary goals of this project are:

1. Research literature on music generation and identify the state of the art.

2. Design and implement a model for applying style to digital sheet music.

3. Design a data representation for training a model.

4. Create a valid dataset for extracting note velocity.

5. Perform an experiment on the model’s musical performances through human
evaluation with a musical Turing test[2].

6. Perform an experiment to evaluate whether the model can perform in di↵erent
styles.

1.6 Overview of Thesis Structure

The musical theory required to understand this thesis is presented in Chapter 2. Chapter 3
covers the necessary technical background for this project. Chapter 4 discusses the steps taken
to design a model that can learn style. Chapter 5 describes the pipeline of execution throughout
the project to implement the model with its required dataset. This chapter also covers the
experiments performed to e�ciently train the model. Chapter 6 discusses the experiments
conducted to assess the performance of the model. Chapter 7 lists the results and achievements
as a conclusion.
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Chapter 2

Musical Background

Music has its unique syntax. It has underlying rules which give it its structure. As this thesis
is working primarily with music, one must understand its properties to make well-informed
decisions on the tools that will be used. This chapter will provide a high-level overview of
musical concepts required to understand this thesis. First, the basics of music theory will be
covered. Then high-level details of the MIDI file format will be presented.

2.1 Music Theory

2.1.1 Pitch

Music can be represented by a sequence of notes. However, a note has many properties associated
with it in its contextual song. Firstly, a note has a pitch [14]. Pitch is the aural property of a
note that can be described using a frequency. Notes are labelled using 8 characters ranging from
“A” to “G” to indicate their pitch class. Pitch classes are spaced by a defined frequency interval.
The definition of an interval is the frequency between two pitches. The interval between one
pitch and double or half its frequency can be defined as an octave. Notes separated by this
interval belong to the same pitch class.

2.1.2 Beat

A beat is the basic unit of time for a song. A steady pulse of beats provides rhythm to a song.
Tempo is the speed at which beats are played relative to time, and is measured in Beats Per
Minute(BPM).

2.2 Sheetmusic

2.2.1 Notation

Notes are represented by their vertical height in sheet music with black dots with tails. The
grid-like structure that holds the notes is called a sta↵ as shown in 2.1. There are horizontal
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CHAPTER 2. MUSICAL BACKGROUND

lines that hold the notes. The note’s vertical position corresponds to its pitch. The white
spaces between the lines indicate the white keys on a piano. There are also vertical lines. These
lines divide the sta↵ into measures or bars. A measure will contain time signature to indicate
its musical structure. A time signature describes the rhythmic properties of a bar [14]. The
numerator describes the number of beats in a bar, and the denominator indicates what a beat
is. A time signature of 4/4 or common time defines a bar to be of four 1/4 note beats.

Figure 2.1: A sta↵ with notes.

2.2.2 Dynamics

Dynamics describes how the amplitude of a song varies over time. This is notated in classical
musical notation by Italian phrases which indicate relative loudness. Piano or “p” means “soft”
and forte or “f” means “loud”. These letters can be concatenated together to indicate further
detail about the amplitude. The scale of dynamics can be seen in Figure 2.2.

Figure 2.2: Range of Dynamics.

One may also see abbreviations such as “sf”. This stands for “Sforzando” which indicates to the
performer that they should suddenly emphasise a note. Musical notation can get increasingly
complex with abbreviations that describe the gradual change in dynamics. “Cresendo” indicates
that the score should gradually become louder whereas “Decrescendo” indicates the opposite.
There are increasingly complex terms that describe the dynamics with additional details. An
example of this is “mezzo-forte piano” which means “quite loud and then immediately soft”.
This highlights the verbosity of musical notation.

2.3 MIDI

2.3.1 Overview

How does one represent sheet music digitally? The most commonly used formats represent music
in its waveform format such as WAV. It is di�cult to extract important musical features from
the waveform as mentioned earlier. This motivates the use of the MIDI format. It is a format
used across electronic devices to represent music. It is the primary format used by musicians to
create music through a digital audio workstation. To understand the MIDI format, the events
types and their details will be covered which is then followed by an overview of di↵erent MIDI
formats.
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2.3. MIDI

2.3.2 Events

There are three main types of events that can occur: MIDI, System Exclusive (SysEx) and
Meta events. For the purpose of this thesis, only MIDI events will be discussed. MIDI events
contain musical properties of notes encoded as numbers. A subset of these events encode musical
properties such as the “note on” and “note o↵” events. These events carry three main musical
properties: pitch number, velocity and time.

Note events are responsible for sending a command to play or stop a specific note. These events
carry the pitch of the note which is represented on a scale from 0 to 128. C3 is represented by the
pitch number 48 and C4 in the next octave is represented by 60. Additionally, the dynamics are
also encoded using a parameter called “velocity” which is analogous to volume. An interesting
aspect of MIDI is that the timing of notes is encoded using delta times. This means that every
event stores a starting time which is the di↵erential time between the previous note event and
the current absolute time. If a note event is of type “o↵”, it signals the end of the note being
played. On the other hand, when it is of type “on”, it signals a command to play the specified
note.

2.3.3 Formats

There are three main MIDI formats in use today. These are format 0, 1 and 2. Each format
specifies how the event sequences are handled within the file. Before going through the un-
derstanding of the formats, one must learn what a MIDI track is. A track is a sequence of
time-ordered events. In format 0, all note event reside within one track. This would mean all
instrument tracks reside in one stream of events. In format 1, there are multiple tracks where
each instrument has its own track. When playing a format 1 MIDI, all tracks are synchronously
played with the same tempo and time signature. This is where format 2 di↵ers. It allows the
simultaneous playback of several contained asynchronous tracks. These structures allows us to
easily extract musical information from the file. Another advantage of using MIDI formats is that
there are a large number of files available for download. This allows us to explore data-driven
approaches. The next chapter will explain the technical details of such an approach.
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Chapter 3

Technical Background

Music can be thought of as a language that is understood across human culture [43]. However,
when it comes down to formalising the structure of music, there is no exact answer. For this
reason, it is extremely di�cult to explicitly program a machine to learn how to play sheet music
due to the nature of the problem. When choosing a suitable approach, one must take into
consideration the amount of data available for the task at hand. Fortunately, data is not a
problem here as there are many MIDI files available for download. A certain type of machine
learning model called the Artificial Neural Network has gained popularity in recent years. The
artificial neural network was introduced in the year 1943 and is modelled after the biological
neuron [35]. They have sparked in popularity in recent years due to large amounts of data
available and GPU parallelisation. These models are producing extremely positive results in
a variety of research areas [13, 22]. This motivates the use of artificial neural networks for
learning style. First, an introduction of machine learning is provided. This is followed by the
theory behind artificial neural networks.

3.1 Introduction to Machine Learning

Machine learning algorithms allow machines to learn from and analyse data without requiring
the explicit programming of a human. These algorithms are used vastly in making important
predictions about the future such as weather forecasting. Firstly, an introduction to supervised
learning is given. Then a specific supervised learning approach called Linear Regression will be
explained. Lastly, variants of an optimisation technique called gradient descent will be explored.

3.2 Supervised Learning

A teacher uses their knowledge to teach and correct a student’s mistakes. This is analogous to
teaching a machine learning algorithm using a labelled dataset. When the algorithm makes a
prediction on an example, its accuracy can be calculated as the corresponding answer to the
example is known. Formally, supervised learning is a type of learning where an algorithm tries
to learn the mapping between the input, x and the output, y. There are two main types of
supervised learning algorithms: regression and classification.

9



CHAPTER 3. TECHNICAL BACKGROUND

3.2.1 Classification

Classification is a variant of supervised learning that models the mapping of an input, x to a
discrete dependent variable y which represent a category of some type.

3.2.2 Linear Regression

Linear Regression is a type of supervised learning approach that models the relationship of x
and y where x is an independent variable and y is a continuous dependent variable. x may be
continuous or binary. The general linear equation is used estimate model parameters ✓ from the
data:

y

i

= ✓0 +
X

✓

i

x

i

(3.1)

3.2.3 Least-Squares Regression

The most common parameter estimation method for fitting a regression line is the Least Squares
Estimation. This method tries to minimise the sum of squared residuals. A residual is defined
as the di↵erence between the actual value of the dependent variable, and the value predicted by
the model. Mean Squared Error is an estimator used in regression tasks to evaluate the accuracy
of a model. It is the mean of the sum of squared residuals over a training set.

RSS =
nX

i=1

(y
i

� ŷ

i

)2 (3.2)

MSE =
1

n

nX

i=1

(y
i

� ŷ

i

)2 (3.3)

3.3 Gradient Descent

The optimisation technique called gradient descent is a widely used in the field of machine
learning [45]. It allows us to minimise a di↵erentiable loss function such as MSE to improve
a model. However, these optimisation techniques are often used without their understanding.
This section will explain di↵erent variants of gradient descent and their implications on learning.

3.3.1 Batch Gradient Descent

When trying to minimise a function, J(✓), the parameters of a model ✓ must be adjusted. As our
function is di↵erentiable, this can be done by calculating the gradient of J(✓) with respect to ✓.
The weights are then adjusted using a learning rate ⌘. For batch gradient descent, the gradients
for the whole training are calculated and ✓ is updated once. It is guaranteed to converge to a
global minimum if our loss is a convex function, and a local minimum if non-convex. The update
equation is as follows:

✓ = ✓ � ⌘ ·r
✓

J(✓) (3.4)
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3.4. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

The practical implications of this process are that updates happen after a long period of time
and thus training cannot be done online. For larger training sets, training may be extremely
di�cult due to limitations on memory [45]. Several redundant calculations are performed before
every update. The next subsection explains another variant of gradient descent which reduces
the implication of the problems faced by batch gradient descent.

3.3.2 Stochastic Gradient Descent

Stochastic gradient descent is another variant of gradient descent which focuses on training
examples rather than the whole training set. The gradients are calculated for every training
example (x(i); y(i)) where i = 0, ..., n and n is the size of the training set. After the gradients
have been calculated for an example, an update is performed. The update equation is as follows:

✓ = ✓ � ⌘ ·r
✓

J(✓;x(i); y(i)) (3.5)

This is beneficial if one requires their training to be online [45]. The implications on memory
are quite advantageous if the training set is large. However, due to the high variance in updates,
the trajectory of descent can be quite noisy. This can be beneficial as the noisy trajectory will
overshoot the local minimum and continue descent into a valley which may lead to a better local
minimum. If one slowly decreases the learning rate of stochastic gradient descent, then it is
guaranteed to converge to the local minimum like batch gradient descent [45].

3.3.3 Mini-batch Gradient Descent

Mini-batch gradient descent attempts at achieving a balance between batch and stochastic gra-
dient descent by reducing the variance in the updates, and reducing memory usage of larger
datasets. As the name states, mini-batches of size n are used for training. The update equation
is as follows:

✓ = ✓ � ⌘ ·r
✓

J(✓;x(i:i+n); y(i:i+n)) (3.6)

3.3.4 Hyperparameter Optimisation

There exist a number of gradient descent variations that introduce di↵erent hyperparameters
in an attempt to further improve convergence [5]. Gradient descent algorithms may include
an additional hyperparameter called momentum [45]. Momentum tries to reduce the noisy
trajectory taken during descent. Per-parameter adaptive learning rate methods are usually
incorporated as well. The mathematical details of di↵erent gradient descent variations fall
outside the scope of this thesis.

3.4 Introduction to Artificial Neural Networks

Now with an understanding of machine learning, the underlying details of artificial neural net-
works can be explained. First, the artificial neuron will be introduced followed by a brief
discussion about their activation functions.
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CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.1: The Neuron.

3.4.1 The Neuron

A neuron is a basic unit of computation [36]. They are nodes which are connected by directed
edges in a graph or network. These directed edges are called weights and biologically represent
synapses. Each node contains an activation function, g, which produces the neuron’s output.

The inputs, x
i

, where i = 1, 2, ..., n, are multiplied with their corresponding weight w
i

. There is
also a bias unit, b. This value of this unit is always 1 and can also be written as w0. The bias
unit exists to add flexibility to the neuron’s output by shifting the activation function g to the
left or right. The net input, z, can be calculated as follows:

z =
nX

i=1

w

i

x

i

+ b (3.7)

The output of a neuron, o, is calculated by applying the activation function g on the net input
z :

o = g(z) (3.8)

The following subsection will discuss the most widely used activation functions and their advan-
tages and disadvantages.

3.4.2 Activation Functions

There is a variety of choice when choosing an activation function for a neuron. Non-linear
activation functions give neurons their ability to learn non-linear patterns. The most commonly
used activation functions are the sigmoid, tanh and the more recent, Rectified Linear unit or
ReLu.

Sigmoid

�(x) =
1

1 + e

�z

(3.9)

The sigmoid function takes any real-valued number and places it in the range of 0 and 1. This
means extremely small numbers are turned into 0 and large numbers are turned into 1. This
property can lead to a undesirable property called “saturation” as extremely small or large
numbers will always be represented by 0 or 1.

12



3.4. INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

Figure 3.2: Sigmoid, tanh, and ReLu.

Tanh

tanh(x) = 2�(2x)� 1 (3.10)

The tanh function takes any real valued number and places it into the range of �1 and 1. Similar
to the sigmoid, it is also verdict to saturation. However, their output is zero-centered.

ReLu

f(x) = max(0, x) (3.11)

The ReLu takes any input and thresholds it at 0. In comparison to the sigmoid and tanh, it is
relatively computationally inexpensive. They have recently gained popularity due to their fast
performance in computer vision [24].

3.4.3 Overview of ANNs

An ANN is typically defined by three types of parameters:

• The topology between the di↵erent layers of neurons.

• The weights between the neurons.

• The activation function.

The next section will explain the feedforward neural network architecture.

13



CHAPTER 3. TECHNICAL BACKGROUND

Figure 3.3: A Feedforward Neural Network.

3.5 Feedforward Neural Networks

The Feedforward Neural Network (FNN) is the simplest and most widely used ANN architecture
[21]. In this architecture, neurons are arranged in layers. The first layer receives the input and
is called the input layer. The last layer produces the output, and is called the output layer.
There may be any number of layers between the input and output layer. These layers are called
hidden layers. Every neuron in one layer is connected to every neuron in the next layer. However,
there are no connections between neurons in the same layer. This can be seen in Figure 3.3.
To train these networks, there are two mains steps: forward propagation and backpropagation.
First, the details of forward propagation will be explained followed by the derivation of the
backpropagation algorithm.

3.5.1 Forward Propagation

Forward propagation describes how data enters through the input layer, travels through the
hidden layers and finally, exits through an output produced by the output layer. Firstly the
output of the input layer l0 is initialised with the input x.

o0 = x (3.12)

Equations 3.7 and 3.8 can be extended to every hidden layer. The net inputs and outputs are
calculated in the order l1 to l

K

where K denotes the output layer.

For k from 1 to K:
z

k

= g

k

(W
k

o

k�1 + b

k

) (3.13a)

o

k

= g(z
k

(x)) (3.13b)

This completes the forward pass.
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3.5. FEEDFORWARD NEURAL NETWORKS

3.5.2 Error and Loss

In linear regression, the loss function can be defined as the mean squared error (MSE) for X
which is a set of input and output pairs, X = {(x1, y1)...(xN , y

N

)}, N is the number of training
examples and h is the output of the network and is parameterised by ✓ = {W, b}

E(X) =
1

2N

NX

i=1

(h
✓

(x
i

)� y

i

)2 (3.14)

During learning, ✓ is updated to minimise the specified error or loss function. This can be done
minimising loss with respect to ✓. Gradient descent can be used to iteratively adjusts ✓ relative
to the loss with a learning rate of ↵ using the following equations:

�w

k

ij

= �↵

�E

�w

k

ij

(3.15a)

�b

k

i

= �↵

�E

�b

k

i

(3.15b)

The partial derivatives on the right-hand side can be calculated using backpropagation. To do
so, two assumptions must hold of a valid loss function. The first requirement is that the loss
function must be generalisable to all the training inputs [27]. This means it can be written as
an average E(X) = 1

n

P
x

E

x

over error functions E
x

, for individual training examples, x. This
property is critical when learning with batched inputs. Secondly, backpropagation requires our
loss function to be di↵erentiable: it needs to be written as a function of the network’s outputs.
This allows us to perform backpropagation which will be explained in the following subsection.

3.5.3 Backpropagation

Before working the understanding of backpropagation, the loss function will be defined as the
quadratic loss function where x

K is the output vector and y is the ground truth vector:

E =
1

2
ky � x

Kk2 (3.16)

For simplicity, the inputs weights for all nodes at kth layer will be denoted by a vector W

k

.
Now the derivation of backpropagation will be shown. For this example, a three layered FFN
(K = 2) will be used. This means the FFN has one hidden layer. To adjust our weights, the
error relative to the weights needs to be calculated. Since the error is known at layer K, the
chain rule can be used to calculate the error with respect to W

K

where K = 2. The 1
2 in the

error function simplifies the expression when deriving the error with respect to W2 using the
chain rule:

@E

@W2
=

@E

@x2

@x2

@W2

= (x2 � t)
@x2

@W2
(3.17)
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Recalling that g2(z2) = x2, and z2 = W2x1, the partial derivative �x2 can be expanded further:

@E

@W2
= (x2 � t)

@x2

@W2

= [(x2 � t) � g02(W2x1)]
@W2x1

@W2

= [(x2 � t) � g02(W2x1)]x
T

1 (3.18)

The error layer k can be defined with respect to its input as:

�

k

⌘ @E

@z

k

. (3.19)

Observing Equation 3.18, the error at layer 2 is the left-hand side of the equation:

Let �2 = (x2 � t) � g02(W2x1)

@E

@W2
= �2x

T

1 (3.20)

Recalling that the input activation for the bias unit is always 1, the error with respect to the
bias b can be calculated as just �2:

@E

@b2
= �2 (3.21)

Now that the �2 has been evaluated, the chain rule can used then be used to calculate �1:

@E

@W1
= (x2 � t)

@x2

@W1

= [(x2 � t) � g02(W2x1)]
@(W2x1)

@W1

= �2
@(W2x1)

@W1

= W

T

2 �2
@x1

@W1

= [W T

2 �2 � g01(W1x0)]
@W1x0

@W1

= �1x
T

0 (3.22)

As before, the error with respect to the bias units b can be calculated as �1:

@E

@b2
= �2 (3.23)

This completes a backward pass for this network. Observing Equation 3.20 and 3.22, the back-
progagation algorithm can be generalised to two cases for � : the final layer and any hidden
layer.

For k = K:

�

K

=
@E

@o

K

� g0
K

(z
K

). (3.24)
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For k from K � 1, ..., 1 :
�

k

= ((W
k+1)

T

�

k

k + 1) � g0
k

(z
k

), (3.25)

Once the � has been calculated using the applicable equation, the error with respect to the
weights and bias can be calculated as follows:

@E

@b

k

= �

k

(3.26)

@E

@W

k

= �

k

o

k�1 (3.27)

3.5.4 The Backpropagation Algorithm

These equations can all be summarised in the backpropagation algorithm as follows:

1. Set the corresponding activations for the input layer with o0 = x.

2. Forward propogate for each k = 1, . . . ,K compute o

k

= W

k

o

k�1 + b

k

.

3. Calculate the error �
K

= r
o

E � g0
k

(z
K

).

4. Backpropagate the error for each k = K � 1, ..., 1 : �
k

= ((W
k+1)T �k+1) � g0

k

(z
k

).

5. Output the gradients for W and b with @E

@Wk
= �

k

o

k�1 and @E

@bk
= �

k

.

6. Perform gradient descent for each k = K�1, . . . , 1 update the W
k

and b

k

using rules 3.15a
and 3.15b with a learning rate of ↵.

Now, the neccessary technical background has been covered. This leads us back to the aim of
this thesis which is to investigate whether it is possible to teach a machine musical style. The
next chapter will explore and discuss the choices made with their specifics to tackle the problem
at hand.
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Chapter 4

Methodology

4.1 Recurrent Neural Networks

How does one deal with sequences, or time? To determine which notes will be articulated at
any given time depends on what was articulated in the past or even future. Musicians write
music taking the global structure of a song into consideration. This leads to say that music has
a complex macro-harmonic structure with many long-term dependencies.

A simple FNN’s ability is limited by their assumption that the inputs and outputs are indepen-
dent of each other. They also lack memory; they do not remember what the previous or future
inputs are. This limits the ability of the network to learn about the context of its computation.
This motivates the use of Recurrent Neural Networks (RNN) which will allow us to capture
musical structure. RNNs have been applied successfully to a range of problems [15, 17, 28].

First, the architecture of the RNN will be discussed and then a special variant of backpropagation
called “Backpropagation Through Time” will be introduced. Next, a specific RNN architecture
called the Long Short Term Memory Network will be explained. Finally, the design of the
musical model is introduced and discussed.

Figure 4.1: An unfolded RNN.
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4.1.1 Architecture

Unlike FNNs, RNNs have a feedback loop and feed their previous state s
t

into their computation
to calculate their output o

t

[6]. This state allows the networks to remember what it processed
in the previous timesteps. The RNN has three main parameters U, V,W , where U and V

are weights corresponding to the input x

t

and output o

t

. The architecture introduces a new
weight called W . This is called the recurrent weight. This weight is responsible for determining
how much of the previous state will be introduced into its computation. The recurrent weight is
shared across all timesteps. This is advantageous as it greatly reduces the number of parameters
the network has to learn. The details of forward propagation in RNNs is almost identical to
FNNs. This will be discussed in the following subsection.

4.1.2 Forward Propagation

There are two main parts to RNN forward propagation: state update and output.

State Update

The first step of forward propagation is to update the current state of the network. In order to
do this, the product of the input x

t

and weight U is calculated which then added to the product
of the previous state s

t�1 with weight W . This computes the current state s

t

of the RNN:

s

t

= d(Ux

t

+Ws

t�1) (4.1)

Output

The product of the previously updated state, s
t

, and weight V computes the output o
t

:

o

t

= V s

t

(4.2)

This completes the forward pass.

4.1.3 Backpropagation Through Time

After completing the forward pass, the loss of the predicted output against the true output
is calculated. This step is identical to the FNN. Now, this leads to performing backpropaga-
tion through time. This is done by unrolling the network by a specified number of timesteps.
Figure 4.1 shows an RNN unfolded over time. This unrolled RNN is essentially a FNN, and
thus backpropagation can be performed as described earlier. However, the di↵erence is that the
unrolled RNN shares the same weights across its layers, T . So for calculating the error relative
to weight w

k

, BPTT calculated the sum of the gradients obtained for w
k

in equivalent layers.

@E

@w

k

=
TX

t=1

�

t

k

o

t

k�1 (4.3)
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4.1.4 Bi-directional RNNs

The vanilla RNN only reads inputs in order; it does not have access or any information regarding
the upcoming time-steps. However, the human eye possesses the ability to look ahead of a bar
in sheet music. This motivates the Bi-directional RNN [48]. This architecture is composed of
two RNN layers. The first layer is called the forward layer. It processes the input sequence in
its original or chronological order. The second layer is called the backward layer. This layer
processes the sequence in reverse. There is no connection between the two layers. The individual
outputs are concatenated to produce the final output.

Figure 4.2: A Bi-directional RNN.

4.1.5 Vanishing Gradients

In the domain of music, short musical pieces exist, and there are also extremely long pieces. This
leads to say music is dynamic in length. Generally speaking, backpropagation provides us with
the ability to iteratively improve a neural model’s accuracy by adjusting its weights. However,
there are some issues that arise when using it on deep neural networks, especially when working
with long sequences such as music [53, 40].

Deep neural networks su↵er from the problem called “vanishing gradients”, and it can severely
diminish the ability for a model to learn. Backpropagation calculates the error with respect to
the weights in the network. This is followed by the error propagation through the network using
the chain rule. This is repeatedly done over a chain of multiplication to calculate the gradients
for the whole network. This lead to problems when this error is propagated down several layers.
The output of g0 may be small, < 1, then the continuous multiplication this output will lead
to smaller values [40]. This may lead to extremely small gradients further down the network.
This phenomenon is called the “vanishing gradients” problem. The implication for many-layered
networks is that earlier layers take longer to train than layers closer to the output layer.

This issue also impacts RNNs as backpropagation through time also su↵ers from this problem.
When processing long sequences, RNNs are unrolled over a large number of time-steps for the
duration of the musical piece. This is analogous to an extremely deep network. As mentioned
earlier, the RNN shares a recurrent weight between its timesteps. When this weight is less than
1, then after a certain number of timesteps, the gradients diminish [41]. The implications of this
are that they are not able to retain state for long sequences.
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4.1.6 Exploding Gradients

If the weights are poorly initialised or become large during training then repeated multiplication
may lead to increasingly larger gradients. This phenomenon is called the “explosive gradients”
problem. In a RNN, a recurrent weight of > 1 will progressively send larger gradients down the
network through time [40]. The implications of this can be disastrous during training. This can
be understood through a geometrical understanding as follows.

When training, the surface of the error function may be a smooth convex function, or it may
have several local minima. Extremely large gradients may arise during backpropagation during
gradient descent. A “zig-zagged” or noisy trajectory is usually taken when descending the surface
of the error function when performing stochastic gradient descent. There may exist directions
denoted by vector d that may be followed by the gradients during descent which will eventually
result in exploding gradients. If the trajectory taken by stochastic gradient descent follows this
vector, then it will arrive at a high curvature wall in the error’s surface. This means that when
stochastic gradient descent calculates its next descent step at this point, it is forced to jump
perpendicular to the walls and may land very far in the valley or possibly outside it [41]. This
may slow down learning considerably and may even disrupt it.

Figure 4.3: The solid line shows a trajectory that results in exploding gradients.

4.2 Long Short-Term Memory Networks

As mentioned earlier, the RNN su↵ers from the vanishing gradients problem which means they
cannot retain state over a long period of time. This would be problematic when long-term
dependencies or context needs to be captured in a musical piece. This motivates a special type
of recurrent neural network called the Long Short-Term Memory Network (LSTM) which was
specifically designed by Hochreiter and Urgen Schmidhuber [18] to avoid these issues.

The RNN has only a simple tanh function within its cell which decides how much weight of the
current state of the cell should be considered for the next timestep [6]. Due to its simple design,
it can only retain this state for short-range dependencies due to the vanishing gradients problem.
Timesteps in the future will be less sensitive to earlier timesteps. It would be advantageous if
the RNN could control when to lose or keep its state. This is where the LSTM excels. First, the
architectural components of the LSTM block will be explained ,and then the intuition behind
how they work will be covered.
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Figure 4.4: A LSTM cell.

4.2.1 Architecture

The architecture of the LSTM adds additional complexity to the vanilla RNN design by adding
specialised gates[18]. There are five main architectural components of the LSTM block:

• Input gate i

• Output gate o

• Forget gate f

• Cell c

• Hidden state output h

Figure 4.4 shows the architecture of the LSTM cell. The five main components will be explained
in the context of the LSTM’s three main steps. These steps will be explained in chronological
order.

Forget

Recalling that LSTM can choose to lose or keep its state, it requires memory. Memory or state
at timestep t is held in the cell C

t

. The forget gate decides which values in the state should be
forgotten or kept at every timestep. Its inputs are the previous output, h

t�1, and the current
input and x

t

. With these two inputs, it uses the sigmoid function to output f
t

. f
t

contains values
between a 0 or 1 highlighting which parts of the previous cell state c

t�1 should be forgotten or
kept when updating c

t

.

f

t

= �(W
f

[h
t�1, xt] + b

f

) (4.4)

Now the c

t

is ready to be updated. This is explained in the next step.
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Cell Update

This has two main substeps. First, the input gate selects which sections of the cell state c

t

will
be updated. The inputs to this gate are x

t

and h

t

� 1. By utilising the sigmoid function, it
outputs i

t

which contains numbers between 0 and 1 to highlight which sections require updating
in the new cell state.

i

t

= �(W
i

[h
t�1, xt] + b

i

) (4.5)

Secondly, a tanh layer computes possible values denotes by ĉ for the new cell state. c

t

is then
computed as follows:

ĉ

t

= tanh(W
c

[h
t�1, xt] + b

c

) (4.6)

The cell state can be updated with the previously computed ĉ

t

and i

t

as follows:

c

t

= f

t

� c
t�1 + i

t

� ĉ
t

(4.7)

This concludes the update step. Next, the output step will be explained.

Output

Finally, the block is ready to produce an output h

t

for the current timestep. There are two
main substeps to compute the output h

t

. First, the LSTM selectively filters which values should
be passed into the output. This is done by passing x

t

and h

t�1 into the sigmoid function to
calculate o

t

:

o

t

= �(W
o

[h
t�1, xt] + b

o

) (4.8)

Next, the cell state c

t

needs to be transformed before the selective output. This is done by
passing c

t

into a tanh layer to squash it between [�1, 1] so the Hadamard product with o

t

results in the selective output vector.

h

t

= o

t

� tanh(c
t

) (4.9)

4.2.2 Constant Error Carousel

The gating mechanism mentioned above in the LSTM tackles the vanishing gradients problem
[18]. This mechanism allows an LSTM cell to withhold cell state for long period of times. The
weight of the recurrent connection in the LSTM cell is the activation of the forget gate. When
the activation of the forget gate is one, this means that the LSTM has a bias of remembering its
state and not forgetting. This state can be constantly “carousel”-ed with its recurrent connection
over timesteps and then can be used as part of the output after several timesteps as required.

@c(t)

@(t� k)
= 1 (4.10)
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This is beneficial during backpropagation. A recurrent weight of < 1 leads to vanishing gradients
over time which is seen in RNNs. With a recurrent weight of one as seen in Equation 4.10 there
will be no chains of multiplications, and this allows the LSTM to withhold the error and learn
long-term dependencies.

4.3 GenreNet

With the motivation mentioned above, the intuition behind the initial design of the network can
be explained. To learn style, one needs to first focus on a subset of the problem. In the domain of
music, there exist several musical styles which are categorised by their parent genre. A genre is
a label that encompasses music of a similar “flavour” or style. As stated in the introduction, the
goal is to capture style through the variation of dynamics in music. Sheet music for a classical
song would be played with a di↵erent range of dynamics than another genre. The following
section explains the architectural decisions for creating a model to learn the style associated
with a genre. This model will be referred to as GenreNet. The goal of GenreNet is to learn how
to play sheet music by learning genre-specific style. The goal is to predict the dynamics of any
given sheet music input.

4.3.1 Architecture

The model consists of two main layers as seen in Figure 4.5 :

• The Bi-Directional LSTM layers

• The linear layer

Bi-Directional LSTM layers

Linear Layer

Sheetmusic

Dynamics

Figure 4.5: GenreNet
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The Bi-Directional LSTM layers

The complex long-term dependencies in music need to be captured which motivates using
LSTMs. The Bi-directional architectural choice is based on the real task of reading sheet music.
Humans can use their sight to skim across sheet music and glance at upcoming notes in the
score. They can use this visual “look ahead” to modify their performance. To translate this
scenario onto an architecture, the analogous layout would be to use a bi-directional layer with
LSTM to give us this foresight. The LSTMs provide memory for remembering dependencies,
and the bi-directional architecture allows the model to take the future into consideration. To
increase the expressive power of the model, these layers can be stacked which means one layer’s
output feeds into the other layer’s input.

The linear layers

How does one best capture the scale of the output? The model is trying to learn the relationship
between sheet music and the dynamics. Dynamics lie on a continuous scale of loudness. The
output of LSTMs usually lies between [�1, 1] due to their activation function. To scale these
numbers to represent a larger range, a linear layer can be used. A linear layer performs a linear
transformation on its input. This transformation is called the identity activation function where
z is the weighted sum of its inputs.

g(z) = z = wT

x (4.11)

4.4 StyleNet

GenreNet’s architecture breaks down the learning problem into two main components. The first
is learning the dependencies and underlying pattern in sheet music. The second is to capture the
scale of the dynamics. However as stated in the introduction, the goal of this research investigates
whether it is possible for a machine to learn to play sheet music like a human. Learning to play
sheet music in a specific genre’s style by learning the dynamics is what GenreNet is designed
to accomplish. However, humans can play music in a variety of styles. Sheet music can be
interpreted, and an intended style can be injected into the song. This motivates the design of
StyleNet, the rendition model. The purpose of StyleNet is to learn to predict di↵erent dynamics
across genres when given sheet music.

In the field of computer vision, Bromley et al. [8] introduced a neural network architecture
called the Siamese Neural network. This architecture consists of identical subnetworks which
share parameters. The purpose of this architecture is to learn the similarity or relationship
between two inputs. Bromley et al. [8] used this network to identify forged signatures. A
signature and the same signature with a time delay is input to the Siamese network. The shared
layer calculates the distance between the subnetwork outputs and compares it against a stored
distance value. Signatures were marked as forged if the distance values di↵ered significantly.
Another usage is seen in natural language process where Yin et al. [58] used a Siamese network
architecture to model a pair of sentences.

Taking inspiration from this architecture, one can create a similar architecture but for music.
Siamese networks find and output the similarity between the inputs. However, in this case,
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Figure 4.6: Bromley et al’s Siamese Neural Network Architecture [8]
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Figure 4.7: StyleNet with two GenreNet units
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the similar feature is known. This feature is the sheet music. The task at hand is to convert
our similar feature into specific representations of that feature, which is creating stylised sheet
music. This can be thought of as reversing the Siamese network where the input is now the
similar feature. However, StyleNet is designed for multitask learning. It is learning di↵erent
styles. This is similar to how Luong et al. [33] trained a neural model to translate English
into a range of languages. StyleNet should translate sheet music into di↵erent styles. It should
produce n outputs where n is the number of styles. Now the architecture design for StyleNet
will be discussed.

4.4.1 Architecture

The StyleNet architecture has two main components as seen in Figure 4.7:

• The Interpretation layer

• The GenreNet Units

4.4.2 Interpretation Layer

For the model to “interpret” the sheet music, there is an Interpretation layer. This is the shared
layer across GenreNet units which are the subnetworks of this architecture. The Interpretation
layer can process sheet music and convert it into a representation that describes its own repre-
sentation of the sheet music. This is analogous to a human’s interpretation of a score. This layer
is shared across all of the GenreNet units. This results in reducing the number of parameters
the network needs to learn. This ultimately leads to needing less data to train our model on
which is always advantageous.

4.4.3 GenreNet Unit

These subnetworks are attached to the interpretation layer. Each GenreNet unit allows the
model to learn a specific style. There is one stylised output for every GenreNet unit attached.
Multiple GenreNet units can be plugged into the Interpretation layer which allows the model
to learn multiple styles. The benefit of having a shared interpretation Layer is that by sharing
parameters across several GenreNets This ultimately leads to needing less data to train our
model on which is always advantageous.
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Implementation

One of the most di�cult tasks in training neural networks is obtaining the necessary data and
representing it in a way for the network to process. Neural networks need data to represented
in a numerical form which also captures the required information. As mentioned before, large
amounts of data now easily available on the internet and this is one of the driving factors that has
resulted in many several successful endeavours with neural networks[26]. Now that the StyleNet
architecture has been designed, the training data needs to be obtained. The goal is to create a
dataset from which StyleNet can learn Classical and Jazz style. In this section, the steps taken
to create the Piano dataset are explained. The Piano dataset only contains Piano MIDIs within
the Classical and Jazz genre. All MIDIs are in 44 time and format 0. Both genres have 349
MIDIs which creates a total of 698. The dataset will be available as complementary material.
This section discusses the data representation chosen for the model. A data representation is
designed for the sheet music input and our dynamics output.

5.1 Data Preprocessing

5.1.1 MIDI

As mentioned in the introduction, retrieving note properties from a musical waveform is di�cult.
MP3 and WAV are the most commonly used audio formats for music, but they represent music
in its waveform. This observation motivates the use of MIDI. There are numerous MIDI files
available on the internet. Additionally, these files are mostly free to use. There also exist a
variety of genres such as Jazz, Classical, Rock and so on. All of these music files contain a
variety of instrument with their digital sheet music. Some MIDI files have instrument solos
whereas some have several instrument tracks which can be seen in orchestral tracks. Firstly,
several Jazz and Classical MIDI files were downloaded from a variety of websites. One source
of classical MIDIs was a yearly piano competition which has uploaded MIDI recordings of its
participants called the Yamaha Piano e-Competition[1].

5.1.2 Isolating Genre

Since we are working within the limitations of MIDI, most human-performed recordings are of
the piano and drums. This is because MIDI controllers do not exist for the other instruments
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(a) All downloaded MIDI (b) Performance MIDIs

Figure 5.1: Histograms of velocity range across MIDI.

such as the guitar. To best capture style, it would be most useful to choose genres which contain
MIDI controller recordings. The piano plays a dominant role in both Jazz and Classical, and
thus I decide to focus on these two genres. Labelled MIDI are available for download for both
genres. Next, the steps taken to isolate the piano tracks are discussed.

5.1.3 Isolating Piano

Across Jazz and Classical MIDIs, there are several instruments. Each instrument is represented
by its own independent note track. Only piano MIDI tracks will be used. The motivation behind
this is because piano tracks carry style. Also, learning the dynamics for a range of instruments
would increase the complexity of the model. To isolate the piano tracks, one must preprocess
the MIDI tracks. Most MIDI files are in format 1 which is a multi-instrument track. There also
exist many MIDIs containing separated tracks for the left and the right hand of the pianist.
The best-suited format for our problem is format 0 as it allows us to focus on one track. All
downloaded MIDI were converted and merged into format 0 MIDI with a single piano track.

5.1.4 Capturing Velocity

Some MIDI files do not capture the velocity dynamics and sound monotonous. This means that
the tracks were most likely created in software and not by recording an instrument. Many tracks
only contain one global velocity. This can be seen in Figure 5.1a. This is noticeable in the
large quantity of MIDIs between 0 and 10 on velocity histogram plot of the downloaded tracks.
To eliminate problematic MIDI, it would be best to compare the range of velocities in human
recordings. In order to do so, a histogram of the Yamaha competition MIDIs was plotted as
seen in Figure 5.1b. Most performances have at least 45 velocities or more. However, most of
these performances are quite lengthy whereas there are shorter tracks in the downloaded set.
Thus a minimum threshold of at least 20 di↵erent velocities was chosen for the dataset.
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5.1.5 Quantisation

Now the process of quantitation will be explained briefly. The sheet music matrix needs to
represent the MIDI structure. MIDI only contains note messages with their delta times. Thus
the delta times are converted into absolute time. Time is on a continuous scale. However,
our matrix is discrete. The next step is to bin our note times by aligning them to the nearest
sample step. This allows us to capture the notes and represent them in a matrix form. The
implication of this is that the notes will lose their exact timing. However, if the note times are
not binned, then the notes may not be captured in the matrix representation. To prevent this
from happening, time signature was constrained to 4/4time across all the music files and choose
a sampling interval of a 1/16th note. All the notes values are binned to the nearest 1/16th
note. Now the sampling intervals align with note times which allows us to capture as much
information as possible. Other time signatures could be used but 4/4 time is the most common
across piano music. 1/16th resolution was chosen as our time signature is 4/4. A finer resolution
would result in extremely large input files which would exponentially increase training times.

5.2 MIDI Encoding Scheme

This section will describe the steps taken to design input and output format to represent our
MIDIs. Data needs to be in a numeric form for it to be accessible by a neural network. Note
velocities, start times and end times is the only required information for the model. First, the
input format, the digital sheet music, for the model is explained. Then the design for output
format which contains the corresponding velocities is discussed.

5.2.1 Sheetmusic Input Representation

Isolating important features is the first step to designing an input format. The model needs
to know what notes are being played at a given time-step. This is analogous to saying a note
has a state at any time step. A note can have three states: note is on, note is o↵, or note is
sustained from the previous time-step. One could only have “note on” and “note o↵” states like
Eck and Schmidhuber [11]. However, this would increase the complexity of the learning task as
the model would need to learn the di↵erence between a sustained note and a new note being
played. Thus this extra piece of information is encoded into the representation.

Using a binary vector, “note on” is encoded as [1, 1], “note sustained” as [0, 1] and “note o↵”
as [0, 0]. The first bit represents whether the note was played in that timestep or not and the
second represents if the note was held or not. One could also decide on representing the input
format as a single number. [0],[0.5], or [1]. However, this representation was not chosen as the
activations for the network would be a fraction of 1. This representation would try and encode
a categorical state on a continuous scale. The model would have to precisely learn that these
small fractional numbers represent categories. Thus a binary vector was chosen to allow strong
activation inputs into the network which should make learning from the representation easier.

Next, the note pitch needs to be encoded. At one time-step, any possible note pitch could be
played. Recalling that MIDI encodes pitch as a number ranging from 0 - 128, a matrix with the
first dimension representing MIDI pitch number is created. The second dimension represents
a quantised timestep or a 1/16 note. Due to the note state being a binary vector, the pitch
dimension will be twice the size. A pitch dimension of 88 ⇤ 2 = 176 was chosen where 88 is the
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Figure 5.2: Input and Output Matrix

range of note pitches, and 2 is the note state vector. The reasoning behind this is that most
pianos only have 88 keys. Thus a pitch axis of size 128 would have pitches that would never be
played. For this reason, only pitches from note 21 to 109 are captured. This leads to a pitch
axis of length 176. This is because most MIDI pianos are 88 notes wide and for each note, there
is a binary vector of length 2. Finally, the number of timesteps for each track is then truncated
to the nearest power of 2 to remove trailing zeros and keep track lengths fairly consistent.

5.2.2 Velocity Output Representation

Similar to our sheet music matrix above, the columns of our matrix represents pitch and the
rows represent timestep. The di↵erence, in this case, is that pitch dimension is only 88 notes
wide. The note velocity is encoded into its corresponding [pitch, timestep] index. To make the
learning process easier, it is best to reduce the scale of the data. This helps the network as it
does not have to learn the scale itself. This can be done by dividing the velocities by the max
velocity, 127. This ensures that all the velocities are between 0 and 1.

Additionally, the created velocity matrix can be decoded back into a quantised MIDI file. This
is done by reversing the encoding process. Every note message in the MIDI is binned to an
absolute time. This absolute time is used with the note pitch as an index into the velocity
matrix. The new velocity is encoded into the MIDI. After this process is performed for every
note message in the MIDI, the resulting stylised MIDI is saved.
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5.2.3 Summary of data representation

A few observations can be made about the proposed encoding scheme:

• It encodes the note state as a binary vector.

• It represents MIDI using a dense matrix with unarticulated notes encoded.

• Sustained and articulated notes are defined as separate states, unlike, prior works [11].

5.3 Training Experiments

As explained in the introduction, training neural networks requires a strong understanding of
their underlying theory [40]. There are several hyperparameters present which can produce
suboptimal results if not chosen with correctly [23, 16]. For the training of StyleNet, the piano
dataset is used. The goal of StyleNet is to learn Jazz and Classical Style. This section will explain
the setup and series of experiments done to justify the final hyperparameters for StyleNet with
their intuition.

5.3.1 Setup

Layers

The input interpretation layer is set to be 176 nodes wide and only one layer deep. There are
two GenreNet units: one for Jazz and one for Classical. Each GenreNet is three layers deep.

Mini-batches

For training, the model was trained on alternating mini-batches of Classical and Jazz songs.
Mini-batches are created based on their genre. A mini-batch size of 4 is chosen. Training is
most successful when there is a large variation in the information carried by the data it learns
from [27]. For this reason, the dataset is shu✏ed to encourage di↵erent combinations of songs
in every mini-batch. This also reduces the chance of a batch of outliers from impacting training
negatively.

Learning Rate

Choosing a suitable learning rate for the model can be complex. A small learning rate would
result in the model taking an extremely long amount of time to train. On the other hand, a
high learning rate can result in gradient descent performing big updates which can cause the
algorithm to diverge which can lead to a disastrous training run. After a series of runs, a learning
rate of 1e�3 was chosen.
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Optimiser

The Adam optimiser was chosen. Adam performs stochastic optimisation with an adaptive
learning rate and momentum [23].

Training and Validation

Most songs are perceived di↵erently, and it is usually di�cult to say two songs sound the
same. This observation leads to say that each song example contains meaningful information
for the model to train on. This motivates our training set and validation set to be 95% and 5%
respectively. This equates to 95% Classical Songs and Jazz songs each for training, and 5% for
validation.

Loss function

StyleNet outputs a velocity matrix for each genre through its GenreNet unit. This is a one-to-
many setting. Given a sheet music input for a specific genre, it predicts a velocity matrix through
a GenreNet unit for the corresponding genre. This is a regression learning problem. Thus a
meaningful metric to measure the performance of the model would be the mean squared error
between the true and predicted velocity matrix. The genre of the input mini-batch determines
which GenreNet’s prediction is used. However one must remember that since our matrices are
mostly zeroes, the errors calculated will be on an extremely small scale.

5.3.2 Experiments

Truncated Backpropagation Through Time

Backpropagation through time is a very computationally expensive process [27, 15], The time
to backpropagate an error for all of the timesteps in a sheet music matrix takes a remarkably
long time. The average length of a sheet music matrix is 1500 timesteps. Backpropagation is
truncated to 200 timesteps to reduce training time. This limits our model to learn dependencies
within a 200 timestep window. However, this improved training time significantly. Convergence
time was reduced from 36 hours to around 12 hours with truncation.

Dropout

A common problem faced during training especially with small amounts of data is overfitting.
This means the model memorises the dataset and does not generalise well to new data. This
motivates the use of dropout. Dropout is a regularisation technique that tries to combat this
issue [59, 49]. When training, a neuron in the network may “turned o↵” with a probability
of p. This means that the weights of the “o↵” neurons are not updated. This is because the
neuron has no e↵ect on the loss function and the gradient computed during backpropagation is
0. The result is that only a subset of the network is updated. Such updates allows the weights
of neurons to become independent of other neurons. It can also be thought of as an ensemble
of models. Bagging is a type of ensemble learning where each model us trained on a subsample
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of the training data and thus learns only a subset of the feature space. Dropout can be thought
of as an ensemble of di↵erent networks trained at each training step on a single sample.

As mentioned by Srivastava et al. [49], a dropout p = 0.5 should produce optimal results.
However, in practice it is usually not the case. A dropout of p = [0.5, 0.8] was experimented
with using a learning rate of 1e-3. A dropout of p = 0.5 means only half the model is only
updated for any mini-batch. If the dataset was extremely large, then a dropout of p = 0.5
could produce results without overfitting similar to the experiments in the paper. However,
the dataset is small, with matrices that contain mostly zeroes. There are also certain notes in
the sheet music matrix which are less commonly played. Thus losing half of a network at a
given time could mean that the network would not see enough examples to learn less common
patterns. This would result in a model that cannot learn the underlying patterns in the data.

In Figure 5.5b, for the p = 0.5 model the loss converges early at 3.5e�3 as compared to p =
0.8. This can also be visualised by plotting the true velocity matrix against the predictions.
This is shown in Figure 5.3. It can be seen that the underfitted model has not learned to
predict velocities correctly. It is only producing a small range of numbers which are at a much
smaller scale than the true velocities. The p = 0.8 model outperforms the underfitted model
and converges at 1.0e� 3 and produces predictions which are visibly similar to the true velocity
matrix. This observation motivates choosing a dropout value of 0.8.

Gradient Explosion

LSTM networks are vulnerable to having their gradients explode during training. A model with
no dropout (p = 1.0) was trained with a learning rate of 1e�3. This resulted in the model
diverging. This can be seen in Figure 5.5a. This is most likely due to gradients exploding during
the training run which caused network weights to blow up. A commonly used technique to
combat explosive gradients is called “clipping gradients by norm” [42]. This method introduces
an additional hyperparameter called g. When the norm of a calculated gradients is greater than
g, then the gradient is scaled relative to g. This parameter is set to 10.

Encoding Scheme

As mentioned in subsection 5.2.1, the chosen encoding scheme is a binary vector representing the
note’s state. This encoding was chosen after experimenting with a discrete representation. When
training with a discrete representation, the resulting velocity prediction matrix had extremely
high velocities as seen in Figure 5.5c. It appears that the network’s weights have become
excessively large. This result could be due to three states being encoding into one input signal.
The distance between each state is small and it makes it di�cult for the neuron to separate the
underlying states in the signal. Thus it can be speculated that when training on this discrete
encoding, an extremely small learning rate would be needed for the model to understand the
representation. Otherwise, the weights of the model could become excessively large and create
unusually high outputs.

5.3.3 Batching Method

In the field of machine translation, Dong et al. [9] used alternating mini-batches of di↵erent
language pairs when translating English into other languages. This inspires the batching method
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Figure 5.3: True and predicted velocity matrix for dropout p = [0.5, 0.8]. Track: YOO01.mid

Figure 5.4: True and predicted velocity matrix for di↵erent encoding schemes. Track: chpn-p20.mid
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for StyleNet. In StyleNet’s case, this means one could alternative between mini-batches of Jazz
and Classical. Another option would be to train StyleNet on every Jazz mini-batch and then
proceed to Classical for every epoch. Both training methods were experimented with as shown
in Figure 5.5d.

Alternating batch genre converged to a smaller error, 1.1e�4, than bulk genre-batching, 3.2e�3.
This is most likely due to sharing the interpretation layer. For bulk genre-training, the calculated
weights of the interpretation layer are first updated to decrease the loss for the Classical GenreNet
subunit. This is done for every Classical mini-batch. Thus it becomes biased towards Classical
music. Then when switching to the next genre, Jazz, the interpretation layer’s weights are
updated to reduce the loss for the Jazz subunit. However, for training with alternating mini-
batches, the shared interpretation layer does not become overly biased towards a single genre.
This means that the shared interpretation layer is learning something generic for both genres
which could help improve the learning process. The large see-sawing e↵ect by the bulk genre-
batching method is mostly likely why it underperformed.

5.3.4 Final Model

Now the setup and results for the final model as can be listed. A StyleNet model has been
successfully trained for the Jazz and Classical music. A dropout of p = 0.8 was applied, and
gradients were clipped by norm where g = 10 with a learning rate of 1e�3. The model was
training for a total of 160 epochs. The final and validation loss was 7.0e�4 and 1.1e�3 respec-
tively.
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Figure 5.5: Experimental runs.
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Evaluation

How does one evaluate a musical performance? Music only holds meaning through the confir-
mation of a human. The loss metrics of a model do not display its ability to perform convincing
music. The decreasing loss shows us that the model is trying to understand the problem nu-
merically. However what one wants is to minimise the “perceptual” loss. Thus it can be quite
challenging when trying to evaluating a model in the field of music. This chapter discusses the
three experiments taken to assess the performance of the model.

6.1 Overview of Experiments

As mentioned in the introduction, the goal of this thesis was to investigate whether a machine
could play sheet music like a human. The second objective was to investigate whether the
machine could play sheet music in di↵erent styles. Alan Turing’s Turing test will be taken
as inspiration for the evaluation [2]. The Turing test tests whether a machine can exhibit an
intelligent behaviour which is indistinguishable from that of a human. If the model passes a
musical Turing test then that concludes that it is possible for a machine to play sheet music like
a human. Additionally, the second objective can be tested by asking a human whether they can
correctly identify the style of the generated song.

Three experiments are conducted. “Identify the Human” is a musical Turing test. This was
performed twice. First on short and then on long audio clips. The other experiment, “Identify
the Style” investigates whether the model has learned style. An overview of the surveys can be
seen in Table 6.1. The following section will explain the first musical Turing test experiment,
“Identify the Human” on short audio clips, followed by “Identify the Style” and lastly, the
final “Identify the Human” experiment on a long audio clip. The validation set was used
to generate performances for the experiment. This was done to ensure that the model only
produced performances on sheet music it had not seen before.

6.2 “Identify the Human” Test

The goal of this test is to evaluate whether the model can produce a musical performance that
is indistinguishable to that of a human. This section covers the details of the experiments and
its results.
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Figure 6.1: “Identify the Human” survey example question.

Figure 6.2: “Identify the Style” survey example question.

Figure 6.3: “Identify the Human in a long performance” survey example question.
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Survey Name Questions Respondents
Identify the Human Survey 1 9 30
Identify the Human Survey 2 9 20
Identify the Style Survey 1 9 22
Identify the Style Survey 2 9 20

Identify the Human in a long performance 1 99

Table 6.1: Survey details

6.2.1 Test design

The “Identify the Human” survey was set up in two parts with 9 questions each. For each
question, participants are shown two 10 second clips of the same performance as shown in
Figure 6.1. One performance is generated and the other is an actual human performance.
Participants need to identify the human performance. The ordering of the generated and human
tracks was randomised to reduce bias towards a particular answer.

6.2.2 Test results

Figure 6.4 shows the average number of correct answers per question. Combining both surveys,
an average of 53% from the participant pool could highlight the human performance. There is no
known benchmark to compare it against as this model is the first of its kind. Thus the baseline
for this experiment is a random guess between the two available options as seen in Figure 6.1.
This reveals that on average, 3% from the participant pool could perform better than random
guessing. This is a surprisingly low number and concludes that the model passed the Turing
test.

6.2.3 Discussion

Most songs are unique in their musical properties. To analyse the survey results requires the
scope of evaluation to become subjective to the question in focus. It is di�cult to form generic
conclusions about the model when each song is a unique case. One must remember that biases
may occur due to the small participant pool. There was no “Cannot Tell” option in the survey.
However, it would still be valuable to better understand the cases where the model underperforms
and passes as a human performer. The subsection will analyse two questions: Q3 and Q15.

Survey Q3

One can see that that 30% of participants answered with the correct answer. This means
70% chose the generated performance over the human one. This result means the model’s
performance sounded less synthetic than the real performance. The velocity matrix plot of
the two performances can be seen in Figure 6.5. In the human performance, there is a large
gradient of velocities at the 68th timestep around key F3. The yellow area indicates an area of
high velocity. However, in the generated performance, the F3 key’s velocity increases gradually.
The human performance may have surprised the participants with its broad range of dynamics
whereas the generated track was more “subtle”. One can speculate and say that if the clips were
longer then significant changes in velocities may not bias results towards a certain answer.
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Figure 6.4: “Identify the Human” survey results

Survey Q15

Another interesting case is Q15. 75% respondents correctly identified the human performance.
This means the model’s performance is noticeably more synthetic than the real performance.
The velocities of the tracks are visualised in Figure 6.6. If one analyses the human performance
carefully, there is a larger spectrum of velocities in comparison to the generated performance.
There are smaller velocities present. In comparison, the generated performance does not contain
these smaller velocities. It can be speculated that the generated performance sounded overly
“energetic” to the participant. This may have been the reason why the human performance
was chosen. A participant mentioned that when they could not isolate the human performance,
they chose the track which sounded softer. Their reasoning was that a human would not write
a musical piece that would require so much physical energy. This comment is quite interesting
as it means that the model may be able to perform sheet music in a style which is di�cult for
a human performer. This also means that the lack of a “Cannot Tell” option introduces noise
into the survey results.

The next experiment will evaluate the model’s performance on its ability to perform sheet music
in di↵erent styles.
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(a) Human performance (b) Generated performance

Figure 6.5: “Identify the Human” survey Q3 velocity matrices.

(a) Human performance (b) Generated performance

Figure 6.6: “Identify the Human” survey Q15 velocity matrices.
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6.3 “Identify the Style” Test

With the model successfully producing indistinguishable performance from that of a human,
this leads the next investigation into the model’s ability to play sheet music in a specific style.
This section explains the experiment and provides a discussion of the results.

6.3.1 Test design

The “Classical or Jazz” survey was set up in two parts with 9 questions each. Sheetmusic for
a single performance is generated in a Classical and Jazz style. These two stylised tracks are
shown to the participants. The task at hand for participants is to correctly identify the style
being asked for. The audio setup in section 6.2 was used.

6.3.2 Test results

The results for this experiment can be seen in Figure 6.7. Combining both surveys, an average
47.5% of respondents selected the correct style. Similar to the previous test, the baseline of this
test is randomly guessing between both answers. This shows that on average 3.5 of participants
performed worse than random guessing. This means they chose the wrong style more often than
than a person that just guessed randomly. The analysis of this number shows that the model
cannot perform stylised renditions of sheet music.
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Figure 6.7: “Identify the Style” survey results
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6.4. FINAL “IDENTIFY THE HUMAN” TEST

Countries Responses
GB 49.70%
SA 16.17%
AE 13.17%
PK 7.78%
US 4.79%
NO 2.99%
BH 1.20%
DE 1.20%
TN 1.20%
IE 0.60%
BD 0.60%
AU 0.60%

Figure 6.8: Distribution of responses for the final “Identify the Human” experiment

6.3.3 Discussion

The experiment indicates that the model is not producing performances that are distinct enough
to be categorised as di↵erent genres. How does one define a genre? Everyone has their own
internal definition of a genre. It is hard to generalise across individuals and formalise how one
labels a composition. Another interesting observation is that in the space of 10 seconds, is it
possible for someone to label a song with its corresponding genre? Participants commented by
saying they needed more context as 10 seconds was too short for them to identify the style.
However, they also mentioned that it was extremely challenging to determine the genre when
both tracks featured the same instrument.

This result leads to a few interesting observations. It is known that musicians perform renditions
of certain songs. An example of this is Metallica. Metallica is a metal band that has performed
their tracks in an Orchestral style [3]. For the style to be easily observable, it is often the case
that the performance must over-exaggerate the qualities of that genre such as the instrument
set. This could mean that to learn style one also needs to learn the complex interactions between
the instruments rather than focusing on a single instrument.

6.4 Final “Identify the Human” Test

As mentioned earlier, some participants mentioned that 10 seconds is not long enough to de-
termine the human performance. It can be hard to assess a short clip without its surrounding
music context. This scenario is analogous to taking a sentence out of its contextual paragraph.
Thus a more valid Turing test would be to assess the model on a complete performance. This
motivates this final Turing test.

6.4.1 Test design

The experiment set-up was identical to the “Identify the Human” test for short audio clips,
but the only di↵erence is that participants had to answer one question featuring an extended
performance. As mentioned earlier, many participants mentioned that they would select a
random answer when they were not sure. Thus a new option called “Cannot Tell” was added

45



CHAPTER 6. EVALUATION

to the survey. An example survey question can be seen in Figure 6.3 The song used for this
experiment was “chpn-p25.mid” which is a 2:30 Classical piece called “Etudes Op.25” by Frédéric
Chopin.

Identify the Human (Full performance) Survey 

Correctly Identified
46%

Wrongly Identified
28%

Can’t Determine
25%

Figure 6.9: Final “Identify the Human” survey results

6.4.2 Test results

The survey was completed by 99 people. Figure 6.9 shows that only 46% participants could iden-
tify the human. This shows that humans are not capable of di↵erentiating between synthetic
and real music. The distribution of responses can be seen in Figure 6.8 The “Cannot Deter-
mine” answer is grouped together with participants incorrectly choosing the generated track
as a human. This means 54% percent of the participant pool cannot distinguish the human
performance. This is more than half of a larger participant pool in comparison to the previous
experiments. This leads to say that the trained StyleNet model has successfully passed the
Turing Test and can generate performances that are indistinguishable from that of a human.

6.4.3 Summary of Results

Three experiment have been successfully carried out on the trained StyleNet model. The exper-
iments can be summarised as follows:

1. The first musical Turing test experiment, “Identify the Human”, was performed on short
audio clips. The results of this experiment concluded that participants could not tell the
di↵erence between short generated and real performances.

2. The second experiment “Identify the Style” was held to identify whether StyleNet could
perform in di↵erent musical styles. Results concluded that participants cannot correctly
identify the style of the generated performances. This result leads to say that the model
cannot generate noticeably stylised performances.

3. The last experiment “Identify the Human” was performed on a long performance. Similar
to the initial test, participants could not tell the di↵erent between the two tracks. The
results of this experiment strengthen our initial findings. In conclusion, StyleNet can
generate performances that are indistinguishable to that of a human.
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Chapter 7

Conclusion

7.1 Summary of Contributions

This project has completed the goals mentioned in chapter 1:

1. Firstly, a new neural architecture called StyleNet was designed specifically to learn style.

2. A suitable data representation was designed for the StyleNet model. This data represen-
tation is analogous to digital sheet music.

3. The piano dataset was created which adheres to certain requirements: all tracks within
the dataset are piano solos from Jazz and Classical MIDI.

4. Training experiments were carried out to best train the StyleNet model.

5. StyleNet’s performances were evaluated using two musical Turing tests. The model passed
both tests. These results conclude that StyleNet can produce human-like performances.

6. An experiment was carried out to determine StyleNet’s ability to perform sheet music in
a genre-specific style. However, the results showed the model is not able to do so.

7.2 Future Work

7.2.1 Learning Genre-specific Style

With the success of StyleNet genenerating performances for sheet music, the next steps would
be to redefine the problem. Currently, the model is learning from piano sheet music. However as
speculated in chapter 6, genres usually encompass specific instrument sets. The next steps for
this project would be to try and model all of the instruments in a given performance. The would
be analogous to having di↵erent StyleNets for di↵erent instruments. This new model would try
and learn the complex interactions between the instruments within the genre. This would be
analogous to having a band performing a song using a set of instruments.
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7.2.2 Experiment with Truncated Backpropagation

Figuring out which combination of hyperparameters yield optimal results is a challenging task.
The evaluated StyleNet model was trained using backpropgation over 200 time steps. This limits
the model to learning only dependencies within this window. One could further investigate the
perceivable e↵ect di↵erent backpropagation time steps have on the model.

7.2.3 Use Case

The trained StyleNet can successfully synthesise the dynamics for sheetmusic. When musicians
work on music, they have to encode velocities manually as they create MIDI tracks in their
digital audio workstation. This monotonous task is an opportunity for StyleNet. StyleNet
should be able to synthesise and inject dynamics into MIDI. This would be extremely beneficial
for musicians.

There are several MIDI available that hold one global velocity, or lack a realistic range of
velocities. StyleNet could be used to add a range of velocities to such tracks. This opens many
doors for using StyleNet to aid the creative process in the field of music.

7.2.4 The Piano Dataset

As highlighted in the introduction, one of the driving forces in the resurgence of neural networks
has been the availability of free large datasets. These datasets have promoted a culture of
creating challenges and competitions for the public to tackle. Such competitions usually result
in significant advancements. This has been especially true for computer vision where datasets
such as PascalVOC and ImageNet could be seen as drivers of new novel research. However, this
is not the case for music. I have spent a significant amount of work creating and curating the
Piano dataset for which I have also produced a testbed survey. One of my next goals is to make
this dataset available and create a set of challenges for the public to tackle. Hopefully, the Piano
data set can stimulate developments in the area of music generation.
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Figure A.1: Training snapshot of StyleNet’s predictions.
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‣ Machine-generated music still struggles to capture the 
‘human touch’ of playing music.[1] 

‣  Humans express emotion through musical style. 
‣  Different genres and instruments display definitive 

styles.  

‣ Can a machine learn musical style?

‣ The neural model will be 
trained on “robotic” music 
and will learn to output 
stylised music. 

‣ First, it will learn to stylise 
the note velocities for a 
given MIDI. 

‣ The model will then learn 
about note durations to 
mimic human imperfections. 

‣ Finally, it will learn how 
style differs between genres 
and instruments.

3. Model

Fig 4. A LSTM network unrolled over time.

Fig 5. Stylising robotic input to Classical Piano and Rock.

‣ Recordings of songs exist in MIDI 
format which can be obtained 
easily through the internet. 

‣ MIDI captures the stylistic 
properties of songs.

‣ Music can be thought of as a 
sequence of notes. 

‣ Notes played in the future are 
dependent on the notes played in 
the past. 

‣ Traditional Neural Networks 
assume their inputs are 
independent of each other.  

‣ Long Short Term Memory 
networks are capable of learning these long term 
dependencies. 

‣ The network cells have feedback loops and memory which 
gives them the ability to retain information over long periods 
of time.

Fig 2. Capturing style by playing on a 
MIDI keyboard. 

Fig 3. Generic feed-forward neural 
network architecture.

2. Data1. What is Musical Style?

4. Outcome

Note Velocity Tempo Note Duration Pitch

Fig 1. Definitive properties of musical style.

Figure A.2: Poster.
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